

Designing Highly Resilient
Financial Services Applications

Based on a reference implementation developed for The

Depository Trust & Clearing Corporation (DTCC)

First published November 20, 2023

Last updated November 20, 2023

Notices
Customers are responsible for making their own independent assessment of the information in this

document. This document: (a) is for informational purposes only, (b) represents current AWS product

offerings and practices, which are subject to change without notice, and (c) does not create any

commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services

are provided “as is” without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,

and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2023

Contents
Abstract and introduction ... 1

Abstract ... 1

Introduction ... 1

Goals and outcomes ... 1

Trade matching and settlement reference applications ... 2

Resilient Financial Services Applications ... 3

Out-of-region recovery patterns (planned and un-planned events) .. 4

Resilient System Design .. 5

Key capabilities of a resilient system .. 5

Resilient Application Design .. 8

Microservice pattern... 8

Exception handling ... 9

Transaction state .. 11

Idempotency .. 12

Static stability in region ... 12

Static stability in multiple regions .. 13

Additional design recommendations .. 14

Recovery & Rotation ... 15

Application considerations .. 15

Platform considerations .. 17

Operational Management ... 18

Global state management ... 18

Automating failover with runbooks .. 19

Conclusion ... 20

Contributors ... 21

Document revisions .. 23

Designing Highly Resilient Financial Services Applications

1

Abstract and introduction

Abstract
This paper focuses on how to apply the Depository Trust & Clearing Corporation’s (DTCC) resilience

principles to real world, mission critical systems. It provides specific architectural guidance to help

customers increase the resilience of their applications. It also provides a sample reference

implementation of an equities trade matching and settlement application using resiliency features

implemented with AWS services. It concludes with an end-to-end, working reference implementation of

the guidance available in GitHub.

Introduction
For over 45 years, the Depository Trust & Clearing Corporation (DTCC) has played a pivotal role in

protecting and supporting the growth of the global financial markets, tackling the industry’s biggest

operational challenges collaboratively, while processing millions of securities transactions every day.

DTCC, in partnership with the financial services industry, has navigated extreme events, evolving

business continuity planning needs and data center redundancy expectations, and increased transaction

processing capacity requirements for critical products and services.

In this whitepaper, we will dive deep into the strategy and approach for delivering resilient cloud

applications. AWS and DTCC have partnered to collaborate on a prototype to realize their resiliency

principles using a simulated business process. Deliverables from this work included a framework, a set of

best practices, and a reference implementation for resilient applications informed by common

requirements in the financial services industry.

As stated in the 2022 whitepaper, The Power of Technology Resilience: A Framework for the

Industry, DTCC understands the importance of its position as a critical infrastructure and service provider

for the global capital markets. In fact, DTCC follows stringent out-of-region (DR) recovery and resumption

requirements for all of its critical services, meeting the regulatory required two-hour recovery time

objective (RTO), and a data recovery point objective (RPO) of merely 30 seconds cross region. DTCC’s

out-of-region recovery locations must be hundreds of miles away from the primary data center, and on

a completely separate power transmission interconnections with a separate physical telecommunications

path. Regulators and supervisors are laser-focused on ensuring DTCC tests and proves its resilience

capabilities, consistently raising expectations for how to implement its most critical systems and software.

The AWS partnership with DTCC has been strong for many years. At the 2018 AWS Summit in New

York, Robert Palatnick, Managing Director and Head of Technology Research and Innovation, described

how DTCC’s AWS footprint began with the migration of analytics workloads to provide faster performance

and cost reductions to the market.

Goals and outcomes
In 2022, AWS and DTCC extended their partnership to develop a reference implementation using AWS

services for DTCC’s most critical (“tier one”) applications to meet the following goals:

https://www.dtcc.com/-/media/Files/Downloads/WhitePapers/The-Power-of-Technology-Resilience.pdf
https://www.dtcc.com/-/media/Files/Downloads/WhitePapers/The-Power-of-Technology-Resilience.pdf
https://aws.amazon.com/solutions/case-studies/DTCC/
https://aws.amazon.com/solutions/case-studies/DTCC/

Designing Highly Resilient Financial Services Applications

2

• Identify a starting point for delivering resiliency in a public cloud environment that can be used as

a foundation for any application

• Create architecture patterns and software assets that demonstrate DTCC’s resiliency principles

• Embed resiliency into applications through the development and consumption of reusable

components and capabilities

• Enable applications to operationally rotate between data center regions and run in each region for

an extended period of time

• Solution solves for planned (scheduled rotation) and unplanned (disaster recovery) events

Outcomes:

• Demonstrate an AWS architecture for a stream-based message processing applications for the

following functional use cases:

o Trade Matching Reference Application

o Settlement Reference Application

• Demonstrate that the proposed prototype architecture meets DTCC's non-functional requirements

for resiliency, both in region and out of region

• Infrastructure-as-code to configure AWS services to host the workload in two AWS regions

• Application code for two representative sample applications which communicate with each other

as part of a business process

• Automated runbooks to orchestrate the rotation of each individual application from the current

active region to an alternate region. Each application rotates independently and must include

replaying transactions from a persistent store and reconciling differences in data state among

stages of the business process

• A dashboard to observe the availability of application components and completeness of data

replication during a planned or unplanned event

This paper will describe the key considerations when designing applications to be highly resilient and the

rationale for the specific choices AWS and DTCC made in this reference implementation.

Trade matching and settlement reference applications
With the goals and objectives defined, we identified trade matching and settlement reference applications

to be implemented for the prototype. The example applications should be complex enough to

approximate real world applications yet simple enough for technical and risk personnel to reason over.

Like real world applications, they should be interconnected and reliant on constant communication with

one another to complete their operations. The two applications chosen represent a basic trade matching

and settlement process.

Designing Highly Resilient Financial Services Applications

3

Succinctly, the trade matching application receives blocks of trades from both brokers and investment

managers. It then matches the trades received from brokers with those received from investment

managers, and once matched, the trades can be sent to the settlement application.

The settlement application receives the trades from the trade matching application and ensures the

seller's account is credited, the buyer's account is debited, and fees are paid to brokers involved. Once a

trade is settled, it is sent back to the trade matching application. The trade matching application marks the

trade as settled and sends notifications to the investment manager and the broker who had submitted the

trade. The high-level design and interactions of these two applications is depicted in the following image:

High level design for trade matching and settlement example application interactions

Resilient Financial Services Applications
Applications which automate business processes like equities trading and settlement are highly complex.

The process requires multiple steps which are implemented by separate subsystems. The state of the

system at any point is a function of the state of each individual subsystem and its data store. To prove

that the overall system is resilient in the face of various failure modes requires careful planning, design,

and testing. This section describes DTCC’s principles for delivering a resilient solution. These principles

will be used to illustrate a design that delivers loosely coupled applications that can independently

operate in either region, demonstrate granular failure and recovery boundaries, and allow for testing

production applications more proactively by relocating between alternate regions.

In The Power of Technology Resilience, DTCC enumerates technology resilience across four

categories of principles:

• Regional Availability: Architecture must be designed for redundancy with auto-correct

capabilities for each component within and across local sites by leveraging multiple instances of

data, compute, and networks. Applications and infrastructure need to perform under all

circumstances and require targeted planning for capacity needs.

• Design Resilient Applications: Applications should be designed to detect internal and external

failures and incorporate capabilities to recover from such failures, safely leveraging automation

whenever possible. Resilient applications are also designed to be independent of other

applications to help isolate data and compute failures. Applications should also be capable of

having their workloads rotated across multiple data centers.

https://www.dtcc.com/-/media/Files/Downloads/WhitePapers/The-Power-of-Technology-Resilience.pdf

Designing Highly Resilient Financial Services Applications

4

• Leverage Out-of-Region Recovery: Applications should be able to recover from disruptions and

incidents at an alternate region to protect from local region failure scenarios affecting service

availability. Ensure capabilities are augmented to maintain data consistency across regions, such

as data reconciliation tools to identify and remediate gaps.

• Resilience Success: All solution designs require adequate validation processes so that each

critical business service can determine its health, and resilience success can be verified upon

recovery by leveraging key performance indicators and automated responses when possible.

Controls should be created to help prevent the corruption and/or destruction of production or

reference data, source code and configuration data.

For the purpose of this effort, this paper mainly focuses on implementing solutions that satisfy the Design

Resilient Applications and Out-of-Region Recovery categories of principles for applications running in an

AWS environment. In addition, it will also provide guidance on achieving in-region availability, failure

detection, automated remediation, validation, and other key aspects of delivering fully resilient

applications.

Out-of-region recovery patterns (planned and un-

planned events)
For out-of-region recovery in AWS, customers must choose a disaster recovery (DR) pattern based on

budget, time-to-recover goals, data loss tolerance of the system, and dependencies on separate internal

and external systems (e.g., AWS control plane APIs). This design must account for both a planned event,

which is the migration of an application from the active region to an alternate region, or what DTCC refers

to as “application rotation,” and an unplanned event, which requires an out-of-region recovery due to an

abrupt and prolonged inability to operate in the primary region. During a planned event when the system

is healthy, the process will execute a graceful shutdown and migration of data. During an unplanned

event, data loss may occur depending on the criticality and extent of the availability event, and the priority

is restoring service as soon as possible. Data loss or inconsistency are addressed later through

compensating transactions and processes which are outside of the system.

DTCC’s requirements for the DR mechanism of critical applications include a recovery time objective

(RTO) of less than two hours and a recovery point objective (RPO) of less than 30 seconds. This means

that if a significant regional availability event impacted the trade matching or settlement applications,

DTCC must demonstrate to internal and external risk management entities that they can recover service

in an alternate region within that time and that messages older than 30 seconds will be processed after

failover to the alternate region.

There are four recommended patterns to implement out-of-region recovery:

1. Active / active - Equivalent infrastructure is deployed in both regions and both regions handle

business traffic simultaneously. The RTO and RPO can both be near zero, but cost and

complexity to avoid data inconsistency between the regions are higher. Some applications may

need to be redesigned to support this pattern because they assume only one authoritative data

store is active at any one time.

Designing Highly Resilient Financial Services Applications

5

2. Active / standby - Equivalent infrastructure is deployed in both regions, however only one region

handles business traffic, while the other region is in a warm standby state, ready to take over

traffic on a short notice. RTO can be in minutes and RPO in seconds and since only one

authoritative data store is active at a time, applications often don’t need to be redesigned.

3. Pilot light - Full infrastructure is deployed in the primary region which handles business traffic,

and a scaled down version of infrastructure is deployed in the secondary region, which needs to

be primed up to match the infrastructure deployed in the primary region before traffic can be

routed to it. RTO can be in tens of minutes. RPO varies based on the mechanism used to

synchronize data changes to the alternate region.

4. Backup and restore - The primary region handles traffic and backs up data stores to another

region, and in case of disaster, the infrastructure and application code is deployed to the alternate

region. Data is restored from the backup data before traffic is routed to the secondary region.

Critical financial services applications typically require low RTO and RPO, but also have performance

requirements which cannot tolerate the latency of a geographically separated active / active architecture.

The benefits of an active / active architecture often do not justify the cost of redesigning the application to

support multiple active data stores accepting updates. The Pilot Light and Backup and Restore patterns

were dismissed due to not meeting the RTO and/or RPO requirements. For these reasons, this paper and

the accompanying reference implementation will focus on an active / standby pattern.

Resilient System Design
This section describes specific design recommendations based on the resilience principles enumerated

earlier and the goal to demonstrate a reliable, repeatable multi-region disaster recovery pattern for

applications running in AWS.

Key capabilities of a resilient system
A system which is resilient even during large scale availability events is more than a function of the

technical design of its business function. To be resilient, the system must include automated

orchestration, monitoring, and testing capabilities. These are described below.

Orchestration

Orchestration is consistently and accurately creating and configuring system components during a

planned or unplanned recovery event. This should be automated in code with clear feedback to site

reliability engineers (SREs) on the state and success of each step of the recovery process. Consider the

alternative: a documented runbook of steps which the SRE should follow during a recovery event. Small

errors in the order, completeness, and verification of each step could introduce new issues in the target

region. This could leave the entire system in an inconsistent state and unable to restore service in either

region.

While the decision to execute this orchestrated failover could be automated based on metrics of the

system’s performance, this decision usually requires human judgement to weigh the risks of continuing to

troubleshoot the resilience event in the current region versus the risks of invoking the failover

orchestration. If the orchestration mechanism is automated and has been rehearsed during many

recovery exercises and planned rotation events, the human decision-makers should have high confidence

in the amount of recovery time and data loss to expect (ideally zero). This makes the go / no-go decision

Designing Highly Resilient Financial Services Applications

6

to push the failover button much less risky, leading to a shorter decision timeframe, and therefore a faster

recovery time.

While the automated failover orchestration runbook for the planned and unplanned scenarios may share

many components, they will differ in some subtle ways. In the planned scenario, all systems are

functioning normally, so the runbook can shutdown components in an orderly fashion and wait for in-flight

transactions to flow through the system. The data associated with those in-flight transactions will be

replicated to the secondary region before allowing new transactions to be processed. During a significant

availability event which affects the system’s ability to complete in-flight transactions and replicate data,

there is no reason for the runbook to wait for that work to complete. It will skip those steps and focus on

restoring service in the second region as soon as possible with the expectation that some data may be

lost.

It is also worth noting that the planned event runbook might sometimes be appropriate even during an

unplanned event. For example, consider a scenario where performance monitoring shows individual

application components like the trade matching microservice or database replication working, but

exceeding performance targets. The system is still working, but just slower than expected. The graceful

failover in the planned runbook may be appropriate in order to minimize data loss while restoring service

in the new region.

The orchestration runbooks for the reference applications are implemented as an AWS Systems Manager

Automation document. Each step in the runbook invokes a small program which uses the AWS Software

Development Kit (SDK) for Python (boto3) to take appropriate actions to check and configure the state of

the services required by the application. Examine the automation document source in the repository

under infrastructure/apps/common/rotation/ or the AWS Systems Manager Automation console

(after deploying the reference implementation to your AWS Account) for a detailed example of automated

orchestration of a multi-region, active / standby DR pattern.

Monitoring

The second important capability for a resilient application is to monitor critical infrastructure and

application metrics, display the information in a dashboard which human decision-makers can easily

reason over, and raise alerts when the metrics breach applicable thresholds. This allows SREs to decide

what action to take quickly and confidently.

It is unlikely that the initial design of what to display and when to alarm will be the optimal one. Rather, a

continuous improvement mechanism like the AWS Well Architected Framework’s Correction of Error

(COE) process should be implemented to continually refine the dashboard and alarms based on

learnings from actual events.

The reference implementation monitors the infrastructure at three levels. First, it uses the AWS Health

Check API to validate that the AWS services used by the application are operating normally. In the rare

event that a problem with the application in one region is correlated with an availability event with one or

more services it depends on in the second region, failover may introduce more risk than remaining in the

current region. Surfacing as much actionable detail to the SREs about the status of the services and its

potential impact is the job of monitoring.

https://github.com/aws-samples/multi-region-resiliency-reference-implementation/tree/a806bf017095ce832cc60e3dc79027c2de64cbb5/infrastructure/apps/common/rotation
https://aws.amazon.com/blogs/mt/why-you-should-develop-a-correction-of-error-coe/
https://aws.amazon.com/blogs/mt/why-you-should-develop-a-correction-of-error-coe/
https://docs.aws.amazon.com/health/latest/ug/health-api.html
https://docs.aws.amazon.com/health/latest/ug/health-api.html

Designing Highly Resilient Financial Services Applications

7

AWS Route 53 Application Recovery Controller (ARC) readiness checks validate that the

infrastructure required to run the application is configured properly. Readiness (that is, READY or NOT

READY) is based on the resources that are in the scope of the readiness check and the set of rules for a

resource type. Examine the source code in infrastructure/apps/template/global/route-53-

readiness-checks.tf or in the ARC console (after deploying the solution to your AWS account) for a

detailed example.

The reference implementation also uses Amazon CloudWatch metrics to monitor key values related to the

resilience of the system, such as cross-region replication lag for data stores. If these breach tolerances,

an Amazon CloudWatch alarm is raised. These again can be examined in the console after deployment

or in the source at infrastructure/apps/common/cloudwatch/alarms.tf

The reference implementation also monitors business-specific metrics emitted by the example

applications to ensure the applications are functioning correctly. For example, order turnaround time and

matching success rate are continually monitored to ensure that the application is running within service

level agreements (SLAs) with business stakeholders.

The consistency of application data is monitored by capturing the number of records in data stores in both

regions and presenting them in the dashboard. It monitors the number of orders flowing through the

application’s components for lags in processing to identify potential bottlenecks before they cause an

availability event. The reference implementation runs synthetic transactions through the applications to

validate that both the infrastructure and applications are healthy and capable of processing transactions

end to end within the acceptable time frame. For specific recommendations on monitoring distributed

systems at scale, see the Amazon Builders’ Library paper Instrumenting distributed systems for

operational visibility.

Testing

Regular, thorough testing of the resilience of a system is the only way to verify that it will meet its recovery

time and recovery point objectives. The reference implementation demonstrates two distinct types of

validation testing.

Failover testing

The reference implementation includes an automated run book implemented as an AWS Systems

Manager Document to automate rotation of the active region for both sample applications. In the planned

failover scenario, no data loss should occur. This is accomplished by taking a snapshot of the database

before and after the rotation and ensuring the two are identical. To test the unplanned scenario, the run

book is parameterized to simulate data loss by deleting records. It then validates that the application can

recover by invoking a reconciliation and replay process between each pair of producer and consumer

microservices within an application and between the matching and settlement applications. These tests

are also executed with multiple, distinct sample data loads to ensure that the procedures are successful

with different sizes and shapes of application state at the time of failover.

Chaos engineering

Chaos engineering validates a system’s ability to be resilient to specific failure scenarios. It is undertaken

as a series of experiments. Each experiment introduces a specific failure scenario and monitors how the

system responds to such scenario. First, conduct a failure mode analysis exercise to identify the points of

https://docs.aws.amazon.com/r53recovery/latest/dg/recovery-readiness.html
https://github.com/aws-samples/multi-region-dr-for-financial-services/infrastructure/apps/template/global/route-53-readiness-checks.tf
https://github.com/aws-samples/multi-region-dr-for-financial-services/infrastructure/apps/template/global/route-53-readiness-checks.tf
https://github.com/aws-samples/multi-region-resiliency-reference-implementation/blob/a806bf017095ce832cc60e3dc79027c2de64cbb5/infrastructure/apps/common/cloudwatch/alarms.tf
https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility
https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility

Designing Highly Resilient Financial Services Applications

8

failure, i.e., various things that can go wrong, in the distributed system. Then identify specific remediation

steps for each of the failure points and describe the expected behavior when such failover scenario

occurs. Each of these scenarios is simulated in an experiment, where the particular failure mode is

induced, and the expected behavior is validated.

The reference implementation uses AWS Fault Injection Simulator (FIS) to implement the failure scenario

experiments. Each experiment involves identifying a set of target resources, such as the Amazon EC2

instances which make up the ECS cluster hosting the application code. The FIS experiment then takes an

action like stopping or terminating the instances to simulate a hardware or other failure. Finally, the

experiment verifies that the appropriate actions happen, like restoring capacity to the cluster and raising

an Amazon CloudWatch Alarm. The reference implementation does not include exhaustive examples of

experiments to test all failure modes but does include multiple example experiments. These leverage both

built-in actions supported by FIS and custom actions implemented as run books. For example,

experiments update the VPC Endpoint Policy to deny access to specific services required by the

application like Amazon Kinesis, Amazon RDS, or Amazon DynamoDB. While not a perfect analog, these

evaluate the system’s resilience when the health of the AWS service is impaired.

Examine the experiment source in the repository under infrastructure/apps/common/chaos/ or the

AWS FIS console (after deploying the reference implementation to your AWS Account) for more details.

Resilient Application Design
This section dives deeper into the application design following the principles defined earlier. Specifically, it

describes how a microservices-based approach improves resilience, how the application must respond to

specific failure conditions, and why idempotency is important for recovery in a distributed application.

Microservice pattern
An application’s resilience is a function of both its own code and configuration – what the application

owner controls – and the dependencies it has on infrastructure and other services. It is the application’s

responsibility to detect and gracefully respond to degraded dependencies. Decomposing the application

as a set of loosely coupled, independent microservices is an effective means to achieve this. Such design

minimizes the blast radius of a failure to an individual component and will not impact other components

and services. The following diagram depicts a high-level view of a microservice with its dependencies and

state storage.

https://github.com/aws-samples/multi-region-resiliency-reference-implementation/tree/a806bf017095ce832cc60e3dc79027c2de64cbb5/infrastructure/apps/common/chaos

Designing Highly Resilient Financial Services Applications

9

Common microservice structure

Examining the diagram reveals several types of failure conditions which the application must detect and

handle to be resilient:

• Internal application failure from code defects

• Dependent downstream or upstream resource failure

• Persistent storage failure

• Executing environment failure

The root causes behind each failure type are different, and a developer should consider the specific

application use case when implementing a resolution. While defensive coding practices can help resolve

issues within the application itself, resolving issues in dependent services is bound by the information and

actions that service exposes. Resolutions include trying to fix the failure at runtime, retry processing, or

passing the responsibility back to the previous component. In the next sections we will cover some

approaches on ways to handle these types of failures.

Exception handling
Proper exception handling is necessary for the application to catch and take appropriate action when a

process flow fails to complete successfully. As described earlier, chaos engineering is one of the primary

means to validate the exception handling in a distributed application. Exception handling inside the

application’s codebase is good development practice and there are specific conventions for each

Designing Highly Resilient Financial Services Applications

10

programming language, but special techniques are required for dealing with failures in dependent

components outside of the application’s control in distributed systems.

Exceptions can be split into two types: Transient and non-transient exceptions.

• Transient exceptions are exceptions that could succeed once they are retried, without applying

any changes. For example, if an API call times out or the server responds that it is busy.

o Retry immediately (Transient): The first time a failure condition occurs, an immediate retry

is often an inexpensive means to resolve the issue. This assumes that the application

keeps track of how many times and how recently an error has occurred. However,

excessive retries can increase pressure on the dependent system and make the problem

worse.

o Sleep and try again later (Transient): A safer way to retry a failed request is to wait for

some time before retrying the request. This could allow the downstream channel to clear a

processing backlog or resolve some other issue resulting in the failed request. This is often

opaque to the client which only receives an error code or the request times out before any

response is received. See the Amazon Builders’ Library paper Timeouts, retries, and

backoff with jitter for more details on implementing capped exponential backoff and other

retry techniques.

• Non-transient exceptions will fail again on retry until the underlying cause of the problem is

corrected. For example, if an API responds that the request is improperly formatted, retries with

the same data will never succeed.

o Skip transaction (Non-Transient): Rather than continuing to retry processing a request

that is failing, it may be best to skip the request after logging it as unprocessed in persistent

storage and informing the upstream channel that the request was skipped via specific return

values. A compensating process, including human review, can investigate why those

requests are failing. See the Transactions Transport State and Checkpoints section below

for more details.

o Delegate responsibility (Non-Transient): If the component cannot do the work it was

asked to do by retrying or skipping the request, the microservice should indicate this with a

critical application error. The monitoring and orchestration mechanisms are then

responsible to take corrective action like attempting to restart the microservice or raising an

alarm to indicate out-of-region recovery may be necessary.

Applications must be able to differentiate between transient and non-transient failures when catching

exceptions in order to determine the appropriate action to take. Proper exception handling reduces the

risk that a failed transaction will impact other valid transactions. It also provides the ability to recover from

some failures by detecting and retrying failed transactions that can still succeed even though the system

may be in a degraded state. Each one of the application's dependent services, such as input services like

queues and streams, persistence storage services, or output services like APIs can potentially fail. The

application should proactively try to resolve these occurrences when possible and raise an alarm when it

is not possible. If it is not possible to handle a failure that is impacting the entire application’s health, the

application should shut down gracefully as it can no longer process new transactions in its current state.

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/

Designing Highly Resilient Financial Services Applications

11

Transaction state
The trade matching and settlement example applications must ensure there is no data loss when

processing the securities trading transactions. The state of the overall transaction must be maintained as

it is processed by multiple independent microservices as depicted earlier: ingress processing, ingestion,

matching, etc. In practice, this means there is a need to persist the transaction details before

acknowledging success to an upstream channel. Within each microservice, each transaction is persisted

and acknowledged once it is successfully processed. If the transaction did not process successfully, it is

automatically assumed that there is a failure, and no acknowledgement is sent to the upstream service.

This allows us to compare transaction state across our intermediate states and replay unprocessed

transactions.

To make this more concrete, consider the steps of the trade matching process described above. When an

investment manager submits the trades and allocations, the matching application, specifically the ingress

gateway microservice, should only acknowledge the request as successful once it has confirmation that

the request has been persisted to a reliable, resilient data store. As other microservices execute

subsequent steps in the process, they must also persist their state, so the overall trade matching

transaction can be reconstructed and restarted in the event of a failure. This is explained in more detail in

the reconciliation and replay section of this paper.

The reference applications use Amazon MQ for ActiveMQ. This allows microservices to acknowledge

successful processing of the message before the message is taken off the processing queue. If a failure

occurs after the microservice read the message but before it successfully processed, the message will

still be on the queue as unacknowledged when the system is restored. See the Apache ActiveMQ

documentation and the Java source for the inbound gateway microservice in the reference

implementation repository for more details.

Checkpoints

The prototype also uses Amazon Kinesis to demonstrate an alternative approach to maintain the state of

a transaction as it is processed by the microservices. The prototype has implemented checkpoints to

safely recover from a failure of the consuming microservice. After a batch of transactions is read from the

stream and processed successfully, a checkpoint is created. In the event of recovery after a failure, like

the ECS task crashing, the service establishes a new lease and simply reads the last saved checkpoint.

Then, it continues processing transactions from that point onwards instead of having to read all

transactions from the beginning.

https://activemq.apache.org/components/artemis/documentation/1.1.0/pre-acknowledge.html
https://activemq.apache.org/components/artemis/documentation/1.1.0/pre-acknowledge.html
https://github.com/aws-samples/multi-region-resiliency-reference-implementation/tree/a806bf017095ce832cc60e3dc79027c2de64cbb5/apps/trade_matching_inbound_gateway

Designing Highly Resilient Financial Services Applications

12

Transaction transport state and checkpoints

Idempotency
What happens when a microservice has successfully processed a transaction message but a failure in

either the microservice or the queuing service prevents acknowledgement that the message has been

processed? When service is restored, the message will still be on the queue as unacknowledged and the

microservice will attempt to process it again. In our example, this could mean a trade order is executed

twice. This scenario is potentially worse than a trade not executing at all.

Designing a resilient application requires the application to be able to reprocess transactions because of

a failure. But in scenarios like the one described above, it is possible that the same transaction may be

processed multiple times. Idempotency is the property that these will yield the same result no matter how

many times the same request is submitted.

Common approaches to implementing idempotent microservices are:

• Adding a unique ID per message and configuring the infrastructure to enforce the unique ID

constraint to prevent duplicate messages

• Checking whether a record already exists before processing it

These techniques hold a similar goal of reaching a consistent result, regardless of the number of times

we replay a message resulting in a deterministic outcome. For more details, see the AWS Builders’

Library paper Making retries safe with idempotent APIs and the implementation of the microservices

in the reference implementation repository.

Static stability in region
DTCC’s regional availability resilience principle requires that an application be architected to continue

servicing clients even when some dependent services in the active region are impaired. A pattern called

static stability is a key building block to achieve this and describes the ability of the system to remain

stable and available even when dependencies are impaired.

Consider the reference implementation’s microservices which make up the trade matching process flow.

The Amazon ECS clusters which host the microservices’ code need a specific amount of capacity to

process the expected load. This capacity is distributed among nodes in three AWS Availability Zones

(AZ). In the event of an AZ impairment, the nodes in the impaired AZ will fail health checks and the

application will stop routing traffic to them until service is restored. All of this occurs without corrective

https://aws.amazon.com/builders-library/making-retries-safe-with-idempotent-APIs/

Designing Highly Resilient Financial Services Applications

13

action, like creating new nodes. For more information, see the AWS Builders’ Library paper Static

stability using Availability Zones.

Implementing application global state manager

Static stability in multiple regions
In addition to being statically stable in a single region, to achieve out-of-region recovery a resilient

application must also be statically stable in the second region as well. Effectively, this means that a

portion of the compute, database, networking, and other infrastructure resources the application depends

on are pre-created in the secondary region so that the failover process is not dependent on creating new

resources. Minimizing dependencies increases the success of our failover procedure and decreases the

time it takes to recover (RTO).

If an application has redundant services running in two or more independent AWS regions, it also follows

that there must be some global service which routes traffic to the “active” region at that time. DNS is the

most common service to provide this routing and AWS’s managed DNS service, Route 53, is a global

service with endpoints in every AWS region. However, the APIs to change DNS records from pointing to

IP addresses in one region to those in another are a regional (not global) service. To avoid the situation

where a resilience event with DNS prevents the application from failing from one region to the other, a

global state manager is needed to allow the application to change routing rules during many failure

conditions, including when the primary region is unavailable. Amazon Route 53 Application Recovery

Controller (ARC) is a managed global state management service which provides these features.

The implementation can simply be defined by a “start/stop” application interface. This provides our

application with the ability of responding to global routing controls in seconds. See the Global State

Manager section under Operational Management in this whitepaper for more information and a detailed

diagram.

https://aws.amazon.com/builders-library/static-stability-using-availability-zones
https://aws.amazon.com/builders-library/static-stability-using-availability-zones

Designing Highly Resilient Financial Services Applications

14

Additional design recommendations
The following table summarizes specific design principles to achieve stringent RTO and RPO targets for

critical systems. Each recommendation is mapped to a resiliency principle category and the risk it

mitigates. More details on these recommendations are in the appendix.

Recommendation Principle category Risk mitigated

Deploy resources in

multiple AWS availability

zones (AZ) in both regions

Regional availability

Design resilient applications

Service or individual

resource availability event in

a single AZ affects

application availability

Externalize the state of

application components to

persistent data stores

Regional availability

Out-of-region recovery

Exceeding RTO due to data

loss or corruption from an

application failure

Minimize external

dependencies, including

AWS Control Plane APIs

and Console, during

recovery events

Design resilient applications

Out-of-region recovery

Resilience success

Exceeding RTO due to

availability issues in the

dependent system

Reserve capacity in both

regions

Out-of-region recovery

Regional availability

Exceeding RTO due to

capacity constraints during a

large-scale event

Configure cross-region

replication

Design resilient applications

Out-of-region recovery

Inability to restore service in

second region due to data

staleness and exceeding

RPO

Automate backup of data

stores and test recovery

from backup regularly

Out-of-region recovery

Regional availability

Resilience success

Exceeding RTO due to data

corruption

Automate reconciliation of

entire system state by

replaying in-flight

transactions during

recovery

Out-of-region recovery

Resilience success

Exceeding RPO due to data

loss during regional

availability event

Design idempotent

components

Design resilient applications

Regional availability

Out-of-region recovery

Data corruption from

duplicate transactions during

availability events

Designing Highly Resilient Financial Services Applications

15

Recommendation Principle category Risk mitigated

Automate DR failover for

planned and unplanned

regional failover

Out-of-region recovery

Resilience success

Exceeding RTO and/or RPO

due to human errors while

following manual runbook

Communicate with

external applications using

stable, regionally

independent endpoints

Design resilient applications

Out-of-region recovery

Exceeding RTO because

multiple applications have to

be failed over due to an

issue with only one of them

Recovery & Rotation
This section covers specific mechanisms to recover and/or rotate a distributed application across regions

to a known good state with minimal (optimally zero) data loss. Following a planned or unplanned event,

applications require similar procedures to ensure they validate their processing state before accepting

new traffic. This entails service health checks, application verification steps, data reconciliation, and a

replay process to minimize data loss. In addition, for this effort we chose to leverage one runbook to

manage a response to both planned and unplanned events. When preparing for both planned and

unplanned events, a single runbook must account for the different steps based on the scenario

presented. For example, planned rotations will include graceful application shutdown steps, quiesced

data replication cycles, and steps to re-establish data replication in the reverse direction. When executing

the same runbook to address an unplanned event, the runbook must detect that the primary region is

unavailable and therefore bypass those steps while ensuring it executes reconciliation and replay tasks to

account for lost data. The constraints and limitations of delivering an application known good state are

discussed below.

Delivering an application design that solves for unplanned (DR) and planned (rotation) events requires

careful considerations of the objectives (RPO and RTO). This is true for both in-region events where

recovery is required in under 30 minutes and no data loss is acceptable and events that trigger an out-of-

region recovery (or rotation) that must be completed in under 2 hours with less than 30 seconds of data

loss. Based on these objectives the reference design had to include application specific code, AWS

platform services with built-in recovery features where possible, and a fully automated recovery process

that sequenced and verified all of the steps required.

Application considerations
To help ensure that the reference architecture design will meet our RTO requirements we chose to

implement a hot/warm model with a global traffic manager that redirects transactions to the active region.

To meet the RPO requirements we leveraged native AWS services to replicate persistent data and also

created app-specific safe stores to help remediate possible data loss following a disruptive event.

Application code was developed to perform a reconciliation process that would determine an applications’

state following any event, planned or unplanned. Should any data loss be identified an application-

specific replay process was developed that pulls data from the persistent storage to close the data loss

gap and deliver a known good state.

Designing Highly Resilient Financial Services Applications

16

Data reconciliation

Data reconciliation is the process of ensuring that two sets of records are in agreement. Reconciliation is

used to ensure that the transaction output from one persistent store matches the expected next

persistence storage. If a failure occurs, resulting in an inability to process the transaction, it may not exist

on the next persistence storage. This is the result of the premise that a transaction can only be committed

once it is successfully processed.

As a result, differences may be present upon comparing the source and destination of the persistent

storage. The data reconciliation process is designed to uncover any potential gaps, and which

transactions have failed to process. The reconciliation process can be executed on any two persistence

storage repositories. This allows us to logically compare two components in our application.

There is an important distinction between intra-application reconciliation and inter-application

reconciliation. Intra-application reconciliation compares any two components within the application, and

when a gap is discovered, it can be reasoned regarding the recovery within the application. However, for

inter-application reconciliation there is a need to compare two separate applications’ persistence storage,

and when this is out of sync it will need to be recovered as well as ensure that the downstream

application has all the transactions sent by the upstream application.

Data reconciliation needs to operate within a time constraint. Given that the operation could include

millions of transactions, the reconciliation process should not be capped at a certain time period when the

disruption occurred. This allows effective comparison of a significant smaller amount of data and uses

shard based/index for faster performance.

To see a working example of this technique, examine the source for the reconciliation app in the

repository.

Data replay

The next part of the application-based recovery implementation is data replay. A replay process was

designed to recover missing data resulting from an unplanned event. The application at the recovery site

used the results of the reconciliation process to inform the replay of transactions from the safe store. This

highlights the need for idempotency so that the transactions can be safely replayed even if some of them

have been partially processed. It is also important to understand that when a message is recovered it

creates a chain reaction along the microservice processing line. Therefore, before invoking another data

reconciliation and replay, it is essential to allow the propagation to finish.

The reference implementation automates the data replay process to run every time after the reconciliation

is executed. It is best practice to always execute these steps to help reduce the possibility of data loss

after any recovery or rotation event. The inclusion of these automated processes helped the prototype

meet the RPO objective by automatically finding and replaying any missing transactions within the RTO.

To see a working example, examine the automation document source in the repository under

infrastructure/apps/common/rotation/ or the AWS Systems Manager Automation console (after

deploying the reference implementation to your AWS Account.)

There are three important considerations that became evident during this effort. First, the reconciliation

and replay process should persist all the actions in an auditable fashion in order to provide evidence

about missing transactions and the replay of recovered transactions. It also helps with further diagnosis if

https://github.com/aws-samples/multi-region-resiliency-reference-implementation/tree/a806bf017095ce832cc60e3dc79027c2de64cbb5/apps/reconciliation_app
https://github.com/aws-samples/multi-region-resiliency-reference-implementation/tree/a806bf017095ce832cc60e3dc79027c2de64cbb5/apps/reconciliation_app
https://github.com/aws-samples/multi-region-resiliency-reference-implementation/tree/a806bf017095ce832cc60e3dc79027c2de64cbb5/infrastructure/apps/common/rotation

Designing Highly Resilient Financial Services Applications

17

required. Second, it should be verified that the entire replay process has been completed before

permitting any new transactions into the system. Finally, while the data replay process described was

sufficient for this reference implementation, this process may not be sufficient for more complex

applications.

Platform considerations
Successful recovery of an application is dependent upon more than just application code that can deliver

reconciliation and replay. The prototype design phase highlighted that an application recovery solution

can be improved by using the resiliency features of the underlying platform resources. Consider the entire

technology stack of both application code and platform resources when designing for maximum

resiliency.

Many AWS services offer built-in recovery and failover solutions for in-region and out-of-region events.

Utilizing the given recovery functionality can accelerate the recovery time, thus minimizing total

RTO/RPO. For example, the trading and settlement sample applications leverage Amazon Aurora Global

Database, Amazon Kinesis, and Amazon MQ for ActiveMQ as critical parts of the design:

• Amazon Aurora Global Database is designed for globally distributed applications, allowing a

single Amazon Aurora database to span multiple AWS Regions. It replicates data with no impact

on database performance, enables fast local reads with low latency in each AWS Region, and

provides disaster recovery from region-wide outages. Amazon Aurora supports out-of-region

recovery through a global-cluster that replicates data between clusters in different AWS Regions,

granting customers multi-region resiliency with a built-in failover feature. AWS RDS also offers

two mechanisms, including Managed Planned Failover and an unplanned detach and promote

pattern, which allows isolating a cluster and enabling it only in a particular AWS Region. Each of

these features are useful for a different set of use cases. However, utilizing the Managed Planned

Failover holds some additional advantages. For more details, see more about Amazon Aurora

Global Disaster Recovery.

To support the regional availability principle, Amazon Aurora spreads the database storage

across multiple AZs, so that an availability event in one AZ will not affect the database service

and will automatically recover when the affected AZ is restored to normal operations.

• Amazon Kinesis streams offer a built-in checkpoint mechanism, which can be managed by the

application directly. Amazon Kinesis holds a checkpoint pointer for each shard, so when a new

client connects, it can request Amazon Kinesis to replay all messages from the last checkpoint

(trim horizon). As discussed earlier in the Transaction state and checkpoints section, this feature

can be utilized so that unless the application moves the checkpoint forward (verified processing),

the service will be automatically configured to replay the message. This is an effective technique

when an application crashes or environmental availability event occurs during processing and it

needs to resume from the last successful processed transaction. This capability only applies to in-

region events. This will not apply to loss of region events where recovery will occur in another

region.

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-disaster-recovery.html

Designing Highly Resilient Financial Services Applications

18

• Amazon MQ for ActiveMQ provides several features for recovery and data persistence. Within a

single AWS Region, ActiveMQ brokers support Amazon Elastic File System (EFS). Amazon EFS

is designed to be highly durable, replicated across multiple AZs to prevent the loss of data

resulting from the failure of any single component or an issue that affects the availability of an AZ.

In addition, Amazon MQ manages state for each message, so that messages can be replayed

when needed. Amazon MQ also supports ActiveMQ's network of brokers feature which can be

configured to replicate messages to brokers in a second region.

Operational Management
Having considered the details for designing the infrastructure and applications to support the resilience

principles, this section will now consider how site reliability engineers and other operations staff will

support these applications in a resilient manner.

Global state management
Managing and operating applications across multiple AWS Regions is not an easy task. It is essential to

know when to stop an application in one region and when to resume operating in another; in addition,

time is needed for the transition to achieve proper recovery and/or rotation. A highly available control

plane such as AWS Route53 ARC provides routing controls and access to change global flags across all

the application deployment environments. Nonetheless, it is important to implement the use of these

controls both on the DR operation runbook and in the actual application using it.

Designing Highly Resilient Financial Services Applications

19

Controlling applications on multi-region environment

Automating failover with runbooks
Runbooks are our operational orchestration mechanism, consisting of several tasks which are carefully

sequenced to achieve a resilient operation such as planned or unplanned disaster recovery (DR).

As mentioned earlier, the reference implementation team built the runbook using an AWS Systems

Manager Document. Each step in the runbook invokes a python program which uses the AWS SDK for

Python (boto3) to read and update the status of AWS Services. While it is technically possible to

automate the decision to failover to the secondary region, DTCC wanted this to be a human decision

based on data about the state of the application. Once that go / no-go decision has been made, all the

detailed steps are automated in the run book. Operators can verify the status of each step through the

dashboard user interface. Examine the automation document source in the repository under

infrastructure/apps/common/rotation/ or the custom observability dashboard (after deploying the

reference implementation to your AWS Account) for a detailed example of an observable, automated

runbook which is pre-provisioned in multiple regions and can be executed in a primary, secondary, or

tertiary region.

https://github.com/aws-samples/multi-region-resiliency-reference-implementation/tree/a806bf017095ce832cc60e3dc79027c2de64cbb5/infrastructure/apps/common/rotation

Designing Highly Resilient Financial Services Applications

20

Planned event – Rotation

A planned failover scenario includes all the tasks necessary to ensure proper transition of the active

workload from one region to another with no data loss and with the minimum possible amount of

downtime. For this reason, several aspects should be considered on both source and destination regions:

• State of the application

• Messages already in the pipeline (source region)

• State of the resources

• Verify data integrity

• Routing traffic

During a planned failover, there is the benefit of time before executing the transition to ensure any

transactions that are currently being processed can be finalized before rotation. In addition, the readiness

of the resource and application can be verified to ensure that the data in both regions is consistent and in

sync before proceeding with the rotation.

All the relevant tasks were collected into a runbook to execute the rotation. The order of each task was

carefully considered, ensuring dependent tasks were timed correctly. Once rotation is completed,

operations in the destination region can resume, but are immediately ready to execute rotation back if

necessary.

Unplanned event - Disaster Recovery (DR)

A DR scenario is similar to a planned failover but is invoked when reducing the time to restore service

(RTO) outweighs trying to recover from problems to avoid data loss (RPO). This decision is based on

metrics and the failure types which indicate that waiting for the application to recover in region is unlikely

to avoid losing in-flight data. For example, if an AWS service like Amazon Kinesis is experiencing a

sustained impairment, waiting may not lead to the streamed data propagating and the unplanned

scenario should be invoked. Note that each application must define “sustained” for itself. How long it can

wait is a function of its RTO. The same logical order is still followed to ensure the persistent storage is

synced and data reconciliation and replay mechanisms are executed in the new region to return the

system to a known good state.

The runbook is parameterized to switch between the planned and unplanned scenarios. When the

unplanned flag is set, certain steps that wait for data to propagate are skipped and traffic is rerouted as

quickly as possible. Since the runbook is deployed on both regions, all of the runbook tasks can be

executed from the failover region and allow the regaining of control of the application.

Conclusion
The deliverables of the AWS Global Financial Services team’s engagement with DTCC were:

• A fully functional prototype which adheres to resiliency principles in DTCC’s Application

Resiliency Foundation (ARF) program. The RTO measured at less than 30 minutes against a 2-

hour target, and RPO was less than 5 seconds against a 30 second target.

Designing Highly Resilient Financial Services Applications

21

• A reconciliation and replay process that was able to recover all of the simulated data loss during a

failover process.

• A specific reference implementation code for high availability and disaster recovery in a separate

AWS Region for modern applications.

• Open source the code and documentation from that prototype so that all of AWS’ customers can

install it and use it as a pattern when designing their own resilient systems.

Some of the key takeaways from this experience and this paper are:

1. A highly available orchestration plane is necessary to retain visibility and control of the

application, even during an availability event.

2. Comprehensive, repeatable, automated, and verifiable tests of failover procedures are needed to

gain the confidence the system is indeed resilient.

3. To prepare for the unknown, it is important to develop capabilities to reconcile data within an

application and between applications to a known good state by replaying transactions where

necessary.

4. Practice, practice, practice. Since failover is automated and can be conducted at a planned time,

do it often so that the decision to invoke a recovery process is an easy one.

5. The collaboration between different engineering teams - development, operational dev-ops, and

monitoring - needs to be aligned to orchestrate the final resilience solution.

6. Meeting the required RTO and RPO targets for the application does not depend on a single

component or technology resiliency feature, but rather on the composite final solution of all

services, technologies, and pipelines. Therefore, it should be evaluated end-to-end with all the

intermediate steps required in between.

All cross-region data replication services have limitations and will not by themselves deliver an RPO of

zero. The possibility of data loss must be accounted for. AWS provides a multi-regional environment with

consistent services, which enables users to orchestrate resilient solution across the globe. DTCC has

been a great partner sharing their requirements and challenges, and their unique perspective contributed

immensely. This collaboration set high standards that can be used as a guidepost for organizations

seeking to achieve better resiliency for their critical workloads on the public cloud.

Contributors
Contributors to this document include:

• Bikash Behera, Enterprise Transformation Architect, Amazon Web Services

• Zahi Ben Shabat, Senior Prototype Architect, Amazon Web Services

• Jack Iu, Principal Solution Architect, Amazon Web Services

• Lee Silverman, Prototyping Engagement Manager, Amazon Web Services

• Jeffrey Quinn, Executive Director of IT Architecture, Depository Trust & Clearing Corporation

• Steven Berube, Director of Application Architecture, Depository Trust & Clearing Corporation

• Abirami Ganeshan, Director of Resiliency Engineering, Depository Trust & Clearing Corporation

Designing Highly Resilient Financial Services Applications

22

• Kenneth Jackson, Senior Manager Solution Architecture, Amazon Web Services

• Deepak Suryanarayanan, Global Manager Multi Region, Amazon Web Services

• Neeraj Kumar, Principal Solution Architect, Amazon Web Services

Designing Highly Resilient Financial Services Applications

Document revisions

Date Description

Month day, 2022 Brief description of revisions.

Month day, YYYY First publication

	Notices
	Abstract and introduction
	Abstract
	Introduction
	Goals and outcomes
	Outcomes:

	Trade matching and settlement reference applications

	Resilient Financial Services Applications
	Out-of-region recovery patterns (planned and un-planned events)

	Resilient System Design
	Key capabilities of a resilient system
	Orchestration
	Monitoring
	Testing
	Failover testing
	Chaos engineering

	Resilient Application Design
	Microservice pattern
	Exception handling
	Transaction state
	Checkpoints

	Idempotency
	Static stability in region
	Static stability in multiple regions
	Additional design recommendations

	Recovery & Rotation
	Application considerations
	Data reconciliation
	Data replay

	Platform considerations

	Operational Management
	Global state management
	Automating failover with runbooks
	Planned event – Rotation
	Unplanned event - Disaster Recovery (DR)

	Conclusion
	Contributors
	Document revisions

